Réponse :
Bonsoir,
Explications étape par étape :
Montrez que k est dérivable en 1.
[tex]f(x)=\dfrac{5}{x^2} \\\\t(x)=\dfrac{\dfrac{5}{(x+h)^2} -\dfrac{5}{x^2} }{h} \\\\=\dfrac{5}{h} *\dfrac{x^2-(x+h)^2}{x^2*(1+h)^2} \\\\=\dfrac{5}{h} *\dfrac{x^2-x^2-2hx-h^2}{x^2*(x+h)^2} \\\\=\dfrac{-5*(2x+h)}{x^2*(x+h)^2} \\\\t(x)=\dfrac{-5*(2x+h)}{x^2*(x+h)^2} \\\\\displaystyle f'(x)= \lim_{n \to \infty} \dfrac{-5*(2x+h)}{x^2*(x+h)^2} =\dfrac{-10x}{x^4} =\dfrac{-10}{x^3} \\[/tex]
La limite existe, donc la fonction est dérivable.
Rem: [tex]f'(1)=\dfrac{-10}{1^3} =-10[/tex]