Bonsoir,
S = 3 + 5 +25/3+125/9+ ⋯ +390 625/2 187
S = 3 + 3 × (5/3) + 3 × (5/3)² + 3 × (5/3)³ + 3 × (5/3)⁴ + 3 × (5/3)⁵ + 3 × (5/3)⁶ + 3 × (5/3)⁷ + 3 × (5/3)⁸
S = 3 (1 + 5/3 + (5/3)² + (5/3)³ + (5/3)⁴ + (5/3)⁵ + (5/3)⁶ + (5/3)⁷ + (5/3)⁸)
S/3 = 1 + 5/3 + (5/3)² + (5/3)³ + (5/3)⁴ + (5/3)⁵ + (5/3)⁶ + (5/3)⁷ + (5/3)⁸
On en déduit que :
(5/3) (S/3) - (S/3) = 5/3 + (5/3)² +(5/3)³ + (5/3)⁴ + (5/3)⁵ + (5/3)⁶ + (5/3)⁷ + (5/3)⁸ + (5/3)⁹ - 1 - 5/3 - (5/3)² - (5/3)³ - (5/3)⁴ - (5/3)⁵ - (5/3)⁶ - (5/3)⁷ - (5/3)⁸
⇒ 2S/9 = (5/3)⁹ - 1
⇒S = 9 ((5/3)⁹ - 1) / 2