Sagot :
Réponse :
IV- L'écriture la plus adaptée
On considère l'expression A = (x-1)(2x +3)-4 (x-1)²
a) Développer puis réduire A
A = (x-1)(2x +3)-4 (x-1)²
= 2 x² + x - 3 - 4(x² - 2 x + 1)
= 2 x² + x - 3 - 4 x² + 8 x - 4
= - 2 x² + 9 x - 7
b) Factoriser A
A = (x-1)(2x +3)-4 (x-1)²
= (x - 1)(2 x + 3 - 4 x + 4)
= (x - 1)(7 - 2 x)
c) Pour chaque situation, choisir celle des expressions précédentes de A, qui paraît la plus adaptée
et faire le travail demandé.
Calculer A pour x = 0; x = 1 ; x = =-1/²; x = √2
pour x = 0 ⇒ Forme développée de A qui est la plus adaptée
donc A = - 7
pour x = - 1/2 ⇒ A = (- 1/2 - 1)(7 - 2*(- 1/2)) =- 3/2) * 6 = - 9
pour x = √2 ⇒ A = - 2 (√2)² + 9 *√2 - 7 = - 4 + 9√2 - 7 = - 11+9√2
Résoudre l'équation A = 0 ⇔ (x - 1)(7 - 2 x) = 0 produit nul
x - 1 = 0 ⇔ x = 1 ou 7 - 2 x = 0 ⇔ x = 7/2 ⇔ S = {1 ; 7/2}
Résoudre l'équation A > 0 (x - 1)(7 - 2 x) > 0
x - ∞ 1 7/2 + ∞
x - 1 - 0 + +
7 - 2 x + + 0 -
P - 0 + 0 -
l'ensemble des solutions S = ]1 ; 7/2[
Explications étape par étape :