👤

Sagot :

Réponse :

mettre sous forme canonique 2x²+4x-7​

2 x² + 4 x - 7  = 2(x² + 2 x - 7/2) = 2(x² + 2 * 1 x - 7/2)

= 2(x² + 2 x + 1 - 1 - 7/2) = 2((x² + 2 x + 1) - 1 - 7/2)

= 2((x + 1)² - 9/2)

= 2(x + 1)² - 9    c'est la forme canonique

Explications étape par étape :

Réponse :

Explications étape par étape :

Bonjour

Forme développé: f(x) = ax² + bx + c

Forme canonique: f(x) = a(x- alpha)² + beta
avec          
alpha = -b / 2a et beta = f(alpha)

1ere méthode tu ne connais pas encore les formules
f(x) = 2(x² + 2x - 7/2)
x² + 2x = x² + 2X x X 1
c'est le début d'une identité remarquable x² + 2xy
il manque y²
x² + 2x = (x + 1)² - 1
on a donc f(x) = 2[ (x + 1)² -1 - 7/2 )
                 f(x) = 2 [(x+1)² - 9/2]

f(x) = 2(x+1)² - 9 (forme canonique)

2eme méthode: On utilise les formules
f(x) = 2x² + 4x - 7
a = 2  ; b = 4 et c = -7
On calcule alpha et beta.
alpha = -b / 2a = -4 / 4 = -1
beta = f(alpha) = f(-1) = 2(-1)² + 4(-1) - 7
                                  = 2 - 4 - 7
                                  = -9
et donc f(x) = 2(x+1)² - 9 (forme canonique)

© 2024 IDNLearn. All rights reserved.