Réponse :
2) démontrer que les droites (IL) et (BC) sont parallèles
(AH) hauteur relative à (BC) en H donc (AH) est perpendiculaire à (BC)
la médiatrice du segment (AH) est perpendiculaire à (AH)
les points I et L appartiennent à la médiatrice du segment (AH)
donc (IL) est perpendiculaire à (AH)
d'après la propriété du cours " si deux droites sont perpendiculaires à une troisième droite alors ces deux droites sont parallèles "
en effet ; (IL) ⊥ (AH) et (BC) ⊥ (AH) donc (IL) // (BC)
3) quelle est la nature du triangle AIH ? justifier la réponse
I ∈ à la médiatrice du segment (AH) donc IA = IH donc AIH est isocèle en I
4) (IL) // (BC) et (LG) // (IC) donc LICG est un parallélogramme
Explications étape par étape :