Sagot :
Réponse:
Bonjour
Explications étape par étape:
cette correction vous a t'elle été utile ?
Bonsoir !
Merci de penser à la politesse lorsque tu poses une question.
[tex]f(x) = \frac{2 {x}^{2} - 5x + 15}{x - 2} [/tex]
1)
[tex]f(x) = \frac{u(x)}{v(x)} \\ \: avec \\ \: u(x) = 2 {x}^{2} - 5x + 15 \\ u'(x) = 4x - 5\\ \: v(x) = x - 2 \\ v'(x) = 1[/tex]
[tex]==> \ f'(x)= \frac{u'v - uv'}{ {v}^{2} } [/tex]
[tex]f'(x) = \frac{(4x - 5)(x - 2) - (2 {x}^{2} - 5x + 15)1}{ {(x - 2)}^{2} } [/tex]
[tex]f'(x) = \frac{4 {x}^{2} - 8x - 5x + 10 - 2 {x}^{2} + 5x - 15 }{ {(x - 2)}^{2} } [/tex]
[tex] \boxed{f'(x) = \frac{2 {x}^{2} - 8x - 5}{ {(x - 2)}^{2} } }[/tex]
2)
La fonction est un quotient, on ne peut pas diviser par 0.
On doit donc avoir :
[tex]x - 2 \ne0 \\ x \ne2[/tex]
Le domaine de définition est :
[tex]D_f=\mathbb{R}- \{2 \} [/tex]
3)
Impossible de calculer f(2).
[tex]f(0) = \frac{2 \times {0}^{2} - 5 \times 0 + 15}{0 - 2} = \frac{15}{ - 2} = - 7.5[/tex]
Bonne soirée