Sagot :
Bonjour !
1)
[tex]f(x) = 4 - (x - 1) {}^{2} \\ = 4 - ( {x}^{2} - 2x + 1) \\ = - {x}^{2} + 2x + 3[/tex]
2) On développe :
[tex]f(x) = (x + 1)(3 - x) \\ = 3x - {x}^{2} + 3 - x \\ = - {x}^{2} + 2x + 3[/tex]
On a bien [tex]f(x) = (x + 1)(3 - x)[/tex]
6)
[tex]f(x) = 2x + 1 \\ - {x}^{2} + 2x + 3 = 2x + 1 \\ - {x}^{2} + 3 = 1 \\ - {x}^{2} = - 2 \\ {x}^{2} = 2[/tex]
Donc [tex]x = \sqrt{2} \: ou \: x = - \sqrt{2} [/tex]
Bonne journée
Réponse :
bonjour
f (x) = 4 - ( x - 1 )²
f (x) = 4 - ( x² - 2 x + 1 )
= 4 - x² + 2 x - 1
= - x² + 2 x + 3
f (x) = ( 2 + x - 1 ) ( 2 - x + 1 )
= ( x + 1 ) ( - x + 3 )
f ( - 2 ) = ( - 2 + 1 ) ( 2 + 3 ) = - 1 * 5 = - 5
f ( 2/3 ) = ( 2/3 + 3/3 ) ( - 2/3 + 3 /3 ) = 5/3 * 1/3 = 1/9
f ( √3) = ( √3 + 1 ) ( - √3 + 3 ) = - √9 + 3 √3 - √3 + 3 = 0
( x + 1 ) ( - x + 3 ) = 0
x = - 1 ou 3
f (x) = 3
- x² + 2 x + 3 = 3
- x² + 2 x = 0
- x ( x - 2 ) = 0
x = 0 ou 2
f (x) = 2 x + 1
- x² + 2 x + 3 = 2 x + 1
- x² + 2 x - 2 x + 3 - 1 = 0
- x² + 2 = 0
- x² = - 2
x² = 2
x = √2 ou - √ 2
Explications étape par étape :