Réponse :
1) soit a et x deux nombres
vérifier que x² + a x = (x - a/2)² - a²/4
(x - a/2)² - a²/4 = x² - ax + a²/4 - a²/4 = x² - a x
2) a) en appliquant le résultat précédent à x² - 2 x
factoriser x² - 2 x - 15
x² - 2 x - 15 = ((x - 1)² - 1) - 15 = (x - 1)² - 16 = (x - 1)² - 4² IDR
= (x - 1 + 4)(x - 1 - 4) = (x + 3)(x - 5)
b) Factoriser x² - 7 x + 12 = ((x - 7/2)² - 49/4 + 12 = (x - 7/2)² - 1/4
= (x - 7/2)² - (1/2)² = (x - 7/2 + 1/2)(x - 7/2 - 1/2) = (x - 3)(x - 4)
Explications étape par étape :