👤

Exercice 8. Un problème d'âge :
Une personne a quatre fois l'âge de son fils. Mais 18 ans plus tard, elle aura deux fois l'âge de son fils.
Le but est de déterminer l'âge de cette personne et celui de son fils.
1°) Notons x l'âge de cette personne et y l'âge de son fils.
Déterminer un système linéaire de deux équations à deux inconnues traduisant le problème.
2°) Résoudre ce système par substitution, puis conclure.
Bonjour j’ai besoin d’aide pour la question 1

Exercice 8 Un Problème Dâge Une Personne A Quatre Fois Lâge De Son Fils Mais 18 Ans Plus Tard Elle Aura Deux Fois Lâge De Son Fils Le But Est De Déterminer Lâge class=

Sagot :

Réponse:

1;

[tex]x = 4y \\ x = 2y + 18[/tex]

Les 2 équations...

2;

on transporte l'équation 1 dans l'équation 2

[tex]4y = 2y + 18 \\ 4y - 2y = 18 \\ 2y = 18 \\ y = 9[/tex]

l'âge Du fils est 9 ans

l'âge de la personne est

[tex]x = 4y \\ x = 9 \times 4 \\ x = 36[/tex]

© 2024 IDNLearn. All rights reserved.