👤

On considère la suit U définie sur N par:

Un = Intégrale de n à n+1 de (fx) dx.

Montrer que, pour tout entier n > ou = à 1 :

f(n+1) < ou = à Un < ou = à f(n)

Sagot :

Il faut absolument avoir que f est décroissante. Soit x appartenant a [n;n+1] f est décroissante, donc f(n+1)

Other Questions

© 2024 IDNLearn. All rights reserved.