a) coef directeur est 2 et ordonnée à l'origine est 1
b) f(1) = 2×1 + 1 = 3
f(3) = 2×3 + 1 = 7
[tex] \frac{f(3) - f(1)}{3 - 1} = \frac{7 - 3}{ 2} = \frac{4}{2} = 2[/tex]
c)
[tex] \frac{f( - 5) - f(1)}{ - 5 - 1} = \frac{ - 9 - 3}{ - 6} = \frac{ - 12}{ - 6} = 2[/tex]
[tex] \frac{f(10) - f(0)}{10 - 0} = \frac{21 - 1}{10} = \frac{20}{10} = 2[/tex]
On observe qu'on obtient toujours 2 pour le taux d'accroissement
d)
[tex] \frac{f(x2) - f(x1)}{x2 - x1} = \frac{2(x2) + 1 ( 2(x1 )+ 1)}{x2 - x1} [/tex]
[tex] \frac{2(x2) + 1 - 2(x1) - 1}{x2 - x1} = \frac{2(x2 - x1)}{x2 - x1} = 2[/tex]