👤

Sagot :

PIDIO

Coucou !

1)

[tex] {e}^{ - x} > {e}^{x} \\ - x > x \\ - 2x > 0 \\ x < 0[/tex]

2)

[tex] {e}^{3x - 1} > 1 \\ {e}^{3x - 1} > {e}^{0} \\ 3x - 1 > 0 \\ 3x > 1 \\ x > \frac{1}{3} [/tex]

3)

[tex] \frac{{e}^{3 {x}^{2} } }{ {e}^{2x} } > {e}^{3x + 2} \\ {e}^{3{x}^{2} - 2x} > {e}^{3x + 2} \\ 3 {x}^{2} - 2x > 3x + 2 \\ 3 {x}^{2} - 5x - 2 > 0[/tex]

On calcule le discriminant.

∆=(-5)²-4×3×(-2)=49

On a deux solutions réelles.

[tex]x1 = \frac{5 + \sqrt{49} }{2 \times 3} = 2[/tex]

[tex]x2 = \frac{5 - \sqrt{49} }{2 \times 3} = \frac{ - 1}{3} [/tex]

C'est du signe de (-a) entre les racines.

la solution est :

x ∈ ]-∞ ; -1/3[ u ]2 ; +∞ [

Bonne soirée

© 2024 IDNLearn. All rights reserved.