Sagot :
[tex]D=22^6 \times \dfrac{33^3}{8 \times 6^3}\\D=(11 \times 2)^6 \times \dfrac{(11 \times 3)^3}{2^3 \times (2 \times 3)^3}\\D= 11^6 \times 2^6\times \dfrac{11^3 \times 3^3}{2^3 \times 2^3 \times 3^3}}\\D= 11^6 \times 2^6\times \dfrac{11^3}{2^3 \times 2^3}\\D=11^6 \times 2^6\times \dfrac{11^3}{2^{3+3}}\\D=11^6 \times 2^6\times \dfrac{11^3}{2^{6}}\\D=11^6 \times 11^3\\D=11^{6+3}\\D=11^9[/tex]
[tex]E=12^2 \times 9^7 \times 18^{-5}\\E=(2^2 \times 3)^2 \times (3^2)^7 \times (3^2 \times 2)^{-5}\\E=2^{2 \times 2} \times 3^2 \times 3^{7 \times 2} \times 3^{2 \times (-5)} \times 2^{-5}\\E=2^4 \times 3^2 \times 3^{14} \times 3^{-10} \times 2^{-5}\\E=2^4 \times 2^{-5} \times 3^2 \times 3^{14} \times 3^{-10} \\E=2^{4-5} \times 3^{2+14-10}\\E=2^{-1} \times 3^6[/tex]