Bonjour,
Factoriser:
A = (2x - 1) - (2x - 3)(4x² - 1)
A = 1(2x - 1) - (2x - 3)(4x² - 1)
A = 1(2x - 1) - (2x - 3)*[(2x)² - 1²]
>> identité remarquable :
A = 1(2x - 1) - (2x - 3)(2x - 1)(2x + 1)
A = 1(2x - 1) - (2x - 3)(2x - 1)(2x + 1)
A = 1(2x - 1) - (2x - 1)(2x - 3)(2x + 1)
>> factorisation :
A = (2x - 1)*[1 - (2x - 3)(2x + 1)]
A = (2x - 1)*[1 - (4x² + 2x - 6x - 3)]
A = (2x - 1)*[1 - (4x² - 4x - 3)]
A = (2x - 1)(1 - 4x² + 4x + 3)
A = (2x - 1)(-4x² + 4x + 4)
A = (2x - 1)*4(-x² + x + 1)
A = 4(2x - 1)(-x² + x + 1)
✅
* = multiplication
Bonne journée