Sagot :
1. Quand x = 4, Monsieur Martin a roulé 4 ´ 60 = 240 km.
Il est à 240 km de Petitville.
Quand x = 10, Monsieur Martin a roulé 10 ´ 60 = 600 km.
Il est à 600 km de Petitville.
2. Quand x = 4, Monsieur Gaspard a roulé 4 ´ 90 = 360 km.
Il est à 900 - 360 = 540 km de Petitville.
Quand x = 10, Monsieur Gaspard a roulé 10 ´ 90 = 900 km.
Monsieur Gaspard est arrivé à Petitville.
3. La distance qui sépare Monsieur Martin de Petitville est égale à la distance qu'il a parcourue en un temps x.
On a donc : 60x
La distance qui sépare Monsieur Gaspard de Petitville est égale à 900 km moins la distance qu'il a parcourue en un temps x.
On a donc : 900 - 90x
4.
x
0
1
4
10
f(x)
0
60
240
600
x
0
1
4
10
g(x)
900
810
540
0
5. Voir graphique ci-dessous :
6. Par lecture graphique, il vient : x = 6 soit à une distance de 360 km de Petitville.
7.a. Lorsque les deux personnes se croisent, elles sont à la même distance de Petitville, on doit donc avoir :
60x = 900 - 90x.
Résolvons cette équation :
60x = 900 - 90x
150x = 900
x = 6
7.b. Ils sont alors tous les deux à 360 km de Petitville.
Il est à 240 km de Petitville.
Quand x = 10, Monsieur Martin a roulé 10 ´ 60 = 600 km.
Il est à 600 km de Petitville.
2. Quand x = 4, Monsieur Gaspard a roulé 4 ´ 90 = 360 km.
Il est à 900 - 360 = 540 km de Petitville.
Quand x = 10, Monsieur Gaspard a roulé 10 ´ 90 = 900 km.
Monsieur Gaspard est arrivé à Petitville.
3. La distance qui sépare Monsieur Martin de Petitville est égale à la distance qu'il a parcourue en un temps x.
On a donc : 60x
La distance qui sépare Monsieur Gaspard de Petitville est égale à 900 km moins la distance qu'il a parcourue en un temps x.
On a donc : 900 - 90x
4.
x
0
1
4
10
f(x)
0
60
240
600
x
0
1
4
10
g(x)
900
810
540
0
5. Voir graphique ci-dessous :
6. Par lecture graphique, il vient : x = 6 soit à une distance de 360 km de Petitville.
7.a. Lorsque les deux personnes se croisent, elles sont à la même distance de Petitville, on doit donc avoir :
60x = 900 - 90x.
Résolvons cette équation :
60x = 900 - 90x
150x = 900
x = 6
7.b. Ils sont alors tous les deux à 360 km de Petitville.