Sagot :
Bonjour,
Notre tipi est en forme de cône de rayon r = 1,5 m, de hauteur h = 3 m.
Son apothème (génératrice) l est calculée grâce au théorème de Pythagore: l² = h² + r² = 9 + 9/4 = 5*9/4
l = 3√5 / 2
1. L'aire latérale d'un cône de rayon r et d'apothème l est donnée par la formule: A = π.r.l = π.r.√(h² + r²) = 15,8 m²
2. La surface latérale d'un cône correspond à un secteur circulaire de rayon l et de longueur d'arc = périmètre de la base = 2π.r
L'aire d'un disque de rayon l = π.l² alors que son périmètre est 2πl
or l'aire d'une section circulaire est proportionnelle à la longueur de son arc.
On a ainsi la proportionnalité suivante:
2π.l →π.l²
2π.r → aire de la section circulaire
aire de la section circulaire = 2π . r . π . l² / (2π.l) = π . r. l (formule qu'on a utilisé dans la question 1)
On peut aussi calculer l'angle de la section circulaire grâce à la proportionnalité angle/ longueur de l'arc:
2π.l → 360° (cercle entier de rayon l)
2π.r → α (angle de la section circulaire)
α = (r/l) . 360° = 360°/√(1+(h/r)²)
α = = 360°/√5 = 161°
La toile a donc la forme d'un secteur circulaire de rayon l = 3,35m et d'angle 161°