👤

Sagot :

USM15

BJR

Q1

zone de jeu pour enfants ⇒ PAS triangle rectangle en A(codage de la figure)

on va donc chercher l'aire de PAS

aire d'un triangle ⇒ base x hauteur /2

ici la base → AS à déterminer et hauteur PA = 28m

on calcule AS avec le théorème de Pythagore ,sachant que PS = 35m est l'hypoténuse de ce triangle puisque c'est le côté situé en face de A  angle droit du triangle PAS

⇒ PS² = AS² + PA²

soit AS² = PS² - PA²

⇒ AS² = 35² - 28²

⇒ AS² = 441

⇒ AS = √ 441

⇒ AS = 21m

---------------------

aire de PAS

⇒ 21 x 28/2 = 294m²

un sac couvre 120m²

combien de sac pour 294m²⇒⇒ 294/120 = 2,45 sacs soit 3 sacs pour ensemenser la zone de jeu

1 sac coûte 13,95€ donc 3 sacs coûtent ⇒ 3 x 13,95 = 41,85€

la mairie devra prévoir un budjet de 41,95€ pour ensemenser toute la zone de jeu pour enfants

Q2

il faut trouver l'aire du  trapèze ARCS

⇒ (petite base AS + grande base RC x hauteur AR) /2

on connait AS = 21m   AR = 28m        et RC à déterminer

calculons RC

l'énoncé dit :

⇒ (AS) et (RC) perpendiculaires à une même droite

et 2 droites perpendiculaires à une même troisième sont parallèles entre elles

donc (AS) // (RC)

⇒ (PR) et (PC) sécantes en P

⇒ les points P;A;R et P;S;C sont alignés et dans le même ordre

les triangles PAS et PRC sont semblables et les longueurs de leurs côtés sont proportionnelles deux à deux

→  donc d'après le théorème de Thalès on a :

PA/PR = AS/RC = PS/PC

avec PA = 28m PR = 2 x 28 = 56m (A milieu PR) de AS = 21m

⇒ PA/PR = AS/RC

⇒ PA x RC = PR x AS

⇒ RC = PR x AS / PA

⇒ RC = 56 x 21 / 28

⇒ RC = 42m

----------------------

  • AIRE du skatepark

⇒ (AS + RC ) x AR/2

⇒ (21 + 42) x 28 /2

⇒ 882m²

bonne  journée

© 2024 IDNLearn. All rights reserved.