👤

Sagot :

Bonjour


factoriser les expressions suivantes


a=x²+2x-15
a = x^2 + 2 * x * 1 + 1^2 - 1^2 - 15

a = (x + 1)^2 - 1 - 15

a = (x + 1)^2 - 16

a = (x + 1)^2 - 4^2 => du type : a^2 - b^2

a = (x + 1 - 4)(x + 1 + 4)

a = (x - 3)(x + 5)


b= x²+4x-32

B = x^2 + 2 * x * 2 + 2^2 - 2^2 - 32

B = (x + 2)^2 - 4 - 32

B = (x + 2)^2 - 36

B = (x + 2)^2 - 6^2

B = (x + 2 - 6)(x + 2 + 6)

B = (x - 4)(x + 8)


c=x²-x-6

C = x^2 - 2 * x * (1/2) + (1/2)^2 - (1/2)^2 - 6

C = (x - 1/2)^2 - 1/4 - 24/4

C = (x - 1/2)^2 - 25/4

C = (x - 1/2)^2 - (5/2)^2

C = (x - 1/2 - 5/2)(x - 1/2 + 5/2)

C = (x - 6/2)(x + 4/2)

C = (x - 3)(x + 2)

D= 4x²-4x-15

D = (2x)^2 - 2 * 2x * 1 + 1^2 - 1^2 - 15

D = (2x - 1)^2 - 1 - 15

D = (2x - 1)^2 - 16

D = (2x - 1)^2 - 4^2

D = (2x - 1 - 4)(2x - 1 + 4)

D = (2x - 5)(2x + 3)

© 2024 IDNLearn. All rights reserved.