Réponse :
f(x) = 2 x² - 3 x + 1
1) Montrer que f est dérivable en - 1 et calculer f '(- 1)
t = [f(-1+h) - f(-1)]/h
f(- 1+h) = 2(-1+h)² - 3(-1+h) + 1
= 2(h²- 2 h + 1) + 3 - 3 h + 1
= 2 h² - 4 h + 2 - 3 h + 4
= 2 h² - 7 h + 6
f(-1) = 2*(-1)² - 3(-1) + 1 = 6
t = (f(-1+h) - f(-1))/h = ((2 h² - 7 h + 6) - 6)/h = (2 h² - 7 h)/h = h(2 h - 7)/h
donc t = 2 h - 7
Lim t(h) = lim (2 h - 7) = - 7
h→ 0 h→ 0
donc lim ((f(-1+h) - f(-1))/h = - 7
h→ 0
la limite étant finie; donc f est bien dérivable en - 1
et sa dérivée f '(-1) = - 7
2) déterminer l'équation réduite de la tangente T à C de f au point d'abscisse - 1
y = f(-1) + f '(-1)(x + 1)
= 6 - 7(x + 1)
donc y = - 7 x - 1 est l'équation de la tangente T au point d'abscisse - 1
3) tu peux tracer tout seul la tangente sur la courbe
Explications étape par étape :