👤

Sagot :

TEAMCE

Bonsoir,

Développer et réduire les expressions :

A = 5x(3x + 5) + (4x - 2)(5x - 2)

A = 5x*3x + 5x*5 + (4x - 2)(5x - 2)

A = 15x² + 25x + 4x*5x + 4x*(-2) + (-2)*5x + (-2)*(-2)

A = 15x² + 25x + 20x² - 8x - 10x + 4

A = 35x² + 7x + 4

B = (3x + 2)(2x - 5) - (6x - 5)(4x + 2)

→ vous appliquez la double distributivité (voir précédemment)

B = 6x² - 15x + 4x - 10 - (24x² + 12x - 20x - 10)

B = 6x² - 11x - 10 - (24x² - 8x - 10)

B = 6x² - 11x - 10 - 24x² + 8x + 10

B = -18x² - 3x

C = (4x - 5)(2x - 5) - (4x + 1)(2x - 3)

→ Double distributivité

C = 8x² - 20x - 10x + 25 - (8x² - 12x + 2x - 3)

C = 8x² - 30x + 25 - (8x² - 10x - 3)

C = 8x² - 30x + 25 - 8x² + 10x + 3

C = -20x + 28

D = -2x(x - 6) + (x + 3)²

→ Double distributivité

D = -2x² + 12x + (x + 3)²

→ identité remarquable :

  • (a + b)² = a² + 2ab + b²

D = -2x² + 12x + x² + 2*x*3 + 3²

D = -2x² + 12x + x² + 6x + 9

D = -x² + 18x + 9

E = (x - 5)² + (x + 2)(x - 5)

→ identité remarquable :

  • (a - b)² = a² - 2ab + b²

E = x² - 2*x*5 + 5² + (x + 2)(x - 5)

E = x² - 10x + 25 + (x + 2)(x - 5)

→ Double distributivité

E = x² - 10x + 25 + x² - 5x + 2x - 10

E = 2x² - 13x + 15

Factoriser les expressions :

A = (6x + 3)(2x - 5) + (3x + 1)(6x + 3)

A = (6x + 3)(2x - 5) + (3x + 1)(6x + 3)

A = (6x + 3)(2x - 5 + (3x + 1))

A = (6x + 3)(2x - 5 + 3x + 1)

A = (6x + 3)(5x - 4)

A = 3(2x + 1)(5x - 4)

B = (4x - 5)(2 - 2x) + (4x - 5)²

B = (4x - 5)(2 - 2x) + (4x - 5)(4x - 5)

B = (4x - 5)(2 - 2x + (4x - 5)

B = (4x - 5)(2 - 2x + 4x - 5)

B = (4x - 5)(2x - 3)

C = (3x + 5)(3 - x) - (3x + 5)(2 + 5x)

C = (3x + 5)(3 - x) - (3x + 5)(2 + 5x)

C = (3x + 5)(3 - x - (2 + 5x))

C = (3x + 5)(3 - x - 2 - 5x)

C = (3x + 5)(-6x + 1)

D = (3x + 4)² - (3x + 4)(8x + 6)

D = (3x + 4)(3x + 4) - (3x + 4)(8x + 6)

D = (3x + 4)(3x + 4 - (8x + 6))

D = (3x + 4)(3x + 4 - 8x - 6)

D = (3x + 4)(-5x - 2)

E = (4x + 3)(3 - 6x) - (4x + 3)(5 + 4x)

E = (4x + 3)(3 - 6x) - (4x + 3)(5 + 4x)

E = (4x + 3)(3 - 6x - (5 + 4x))

E = (4x + 3)(3 - 6x - 5 - 4x)

E = (4x + 3)(-10x - 2)

E = 2(-5x - 1)(4x + 3)

Bonne soirée.

© 2024 IDNLearn. All rights reserved.