Réponse:
Bonjour
Explications étape par étape:
a. On sait que l'hypoténuse d'un triangle est le plus long côté, donc si un côté est n (par exemple 5cm), l'autre côté n+1 (5+1 = 6cm) et le dernier côté n+2 (5+2 = 7cm). L'hypoténuse est donc n+2.
b. Inscrire les longueurs en fonction de n.
c. Théorème de Pythagore :
n² + (n+1)² = (n+2)²
n² + (n² +2×n×1 +1²) = (n² +2×n×2 + 2²)
n² + (n² +2n +1) = n² +4n +4
d. L'équation vérifie :
n² +n² +2n +1 = n² +4n +4
n² + n² -n² +2n -4n = 4 -1
n² -2n = 3
n² -2n -3 = 0
e. Si on factorise :
n² -2n -3 = 0
on obtient : (n-1)² -2
f. On résout l'équation : n² -2n -3 =0
x² -2x -3 = 0
delta = b²-4ac
= (-2)²- 4×1×(-3)
= 16
x1 = -1
x2 = 3
On exclu -1 car ça ne peut pas être une longueur du triangle, la longueur n = 3.