👤

Sagot :

Réponse :

Bonjour

1) Une équation de la tangente à C au point d'abscisse a est donnée par la formule :

Tₐ : y = f'(a)(x - a) + f(x)

Ici f'(a) = -1/a² et f(a) = 1/a

Donc Tₐ : y = -1/a² (x - a) + 1/a

                y = -x/a² + 2/a

2) B appartient à l'axe des ordonnées, il a donc  pour abscisse 0 .

De plus ,il appartient à Tₐ , donc ses coordonnées vérifient l'équation de la tangente.

Donc y = -0/a² + 2/a = 2/a

Donc B(0 ; 2/a)

C appartient à l'axe des abscisses, il a donc 0 pour ordonnée.

De plus, il appartient à Tₐ , donc ses coordonnées vérifient l'équation de la tangente.

Donc y = -x/a² + 2/a ⇔ -x/a² + 2/a = 0

⇔ -x/a² = -2/a

⇔-x = -2a²/a

⇔ -x = -2a

⇔ x = 2a

Donc C(2a ; 0)

3) A appartient à la courbe C , donc ses coordonnées sont (a ; 1/a)

Calculons les coordonnées du milieu de [BC] , avec B(0 ; 2/a) et C(2a ; 0)

x = (0 + 2a)/2 = 2a/2 = a

y  = (2/a + 0)/2 = 1/a

Les coordonnées du milieu de [BC] sont donc (a ; 1/a). Ce sont les coordonnées du point A, donc A est bien le milieu de [BC]

Bonus : voir pièce jointe

View image ECTO220

© 2024 IDNLearn. All rights reserved.