Sagot :
Réponse :
1) Déterminer le nombre d'abonnés en 2021 et en 2022
en 2021 : 500 - 500 x 0.2 + 200 = 600
en 2022 : 600 - 600 x 0.2 + 200 = 680
2) a) donner les valeurs de U0 ; U1 et U2
U0 = 500 ; U1 = 600 et U2 = 680
b) justifier que; pour tout n ∈ N, Un+1 = 0.8Un + 200
U0 = 500
U1 = 500 - 500 x 0.2 + 200 = 500(1 - 0.2) + 200 = 500 x 0.8 + 200
U2 = 600 - 600 x 0.2 + 200 = 0.8 x 600 + 200
U3 = 680 - 680 x 0.2 + 200 = 0.8 x 680 + 200
...................................
Un+1 = Un - Un x 0.2 + 200 = 0.8Un + 200
c) la suite (Un) est géométrique de raison q = 0.8
3) résoudre l'équation x = 0.8 x + 200
on notera x0 la solution de l'équation
x = 0.8 x + 200 ⇔ 0.2 x = 200 ⇔ x = 200/0.2 = 1000
donc x0 = 1000
4) Vn = Un - X0
a) calculer V0 ; V1 et V2
V0 = U0 - 1000 = 500 - 1000 = - 500
V1 = U1 - 1000 = 600 - 1000 = - 400
V2 = U2 - 1000 = 680 - 1000 = - 320
b) V1/V0 = - 400/-500 = 4/5 = 0.8
V2/V1 = -320/-400 = 32/40 = 4/5 = 0.8
la suite (Vn) est une suite géométrique de raison q = 0.8 et de premier terme V0 = - 500
5) on veut démontrer la conjecture de la question précédente
Vn = Un - X0
Vn+1 = Un+1 - X0 = 0.8Un + 200 - 1000 = 0.8Un - 800
Vn+1/Vn = 0.8Un - 800/(Un - 1000) = 0.8(Un - 1000)/(Un - 1000) = 0.8
donc Vn+1/Vn = 0.8 ⇔ Vn+1 = 0.8Vn
b) en déduire la nature de la suite (Vn)
(Vn) est une suite géométrique de raison q = 0.8 et de premier terme
V0 = - 500
c) en déduire l'expression de Vn en fonction de n, puis celle de Un en fonction de n
Vn = V0 x qⁿ donc Vn = - 500 x 0.8ⁿ
Vn = Un - 1000 ⇔ Un = Vn + 1000 ⇔ Un = - 500 x 0.8ⁿ + 1000
6) quel sera le nombre d'abonnés en 2050
U30 = - 500 x 0.8³⁰ + 1000 ≈ 1000
S = 500(1 - 0.8³¹)/0.2 = 2500
Explications étape par étape :