Sagot :
Réponse :
bonjour
Explications étape par étape :
- retrancher ⇒ soustraire
- diviser une fraction par une fraction revient à multiplier la première par l'inverse de la deuxième soit diviser par 1/5 revient à multiplier par 5
Voici un programme de calcul
- avec 7/5 comme nombre de départ
choisir un nombre → 7/5
retrancher par 3\10 → 7/5 - 3/10 = 7 x 2/ 5 x 2 - 3/10 = (14 -3)/10 = 11/10
diviser par 1\5 → 11/10 ÷ 1/5 = 11/10 × 5/1 = 55/10 = 11/2
Ajouter 3\2 → 11/2 + 3/2 = 14/2 = 7
on obtient 7 si on choisit 7/5 comme nombre de départ soit 5 × 7/5
- avec -3 comme nombre de départ
choisir un nombre → -3
retrancher par 3\10 → -3 - 3/10 = (-3 x 10 / 10 x 1) - 3/10=( -30 - 3)/ 10 = -33/10
diviser par 1\5 → -33/10 ÷ 1/5 = -33/10 × 5/1 = -165/10= -33/2
Ajouter 3\2 → -33/2 + 3/2 = -30/2 = -15
si on choisit -3 comme nombre de départ on obtient - 15 soit 5 × - 3
Que pensez vous de l'affirmation suivante Le résultat obtenue est toujours au quintuple du nombre de départ
- prenons x un nombre quelquonque pour justifier cette affirmation
choisir un nombre → x
retrancher 3/10 → (x - 3/10)
diviser par 1/5 → (x - 3/10 ) ÷ 1/5 = (x - 3/10 ) × 5 = 5x - 15/10 = 5x - 3/2
ajouter 3/2 → 5x - 3/2 + 3/2 = 5x
donc quelque soit le nombre x choisi, le résultat obtenu sera toujours le quintuple du nombre de départ soit un multiple de 5
bonne journée