Réponse :
Salut !
Pour que n²+91 soit un carré parfait, il faut qu'on l'écrive sous la forme p² = n² + 91, p étant un entier naturel.
On doit donc trouver les valeurs de n qui vérifient (p-n)(p+n) = 91.
Mais 91 = 1*91 = 7*13.
Tu as le choix :
Soit p-n = 1 et p+n = 91, auquel cas n = 45.
Soit p-n = 7 et p+n = 13, auquel cas n = 3.
Explications étape par étape :