Sagot :
Réponse :
Explications étape par étape :
Bonjour
on calcule les 5 premiers termes de chaque suite
Un = 4n² - 2n + 6
u₀= 4(0)² - 2(0) + 6 = 6
u₁ = 4(1)² - 2(1) + 6 = 4 - 2 + 6 = 8
u₂= 4(2)² - 2(2) + 6 = 16 - 4 + 6 = 18
u₃= 4(3)² - 2(3) + 6 = 36 - 6 + 6 = 36
u₄ = 4(4)² - 2(4) + 6 = 64 - 8 + 6 = 62
Vn = (n + 3) /(n + 1)
v₀ = ( 0 + 3) /( 0 + 1) = 3/1 = 3
v₁ = ( 1 + 3) /( 1 + 1) = 4/2 = 2
v₂ = ( 2 + 3) /( 2 + 1) = 5/3
v₃ = ( 3 + 3) /( 3 + 1) = 6/4
v₄ = ( 4 + 3) /( 4 + 1) = 7/5
Wn = 5n + 3/(n+ 2)
w₀ = 5(0) + 3/((0)+ 2) = 3/2
w₁ = 5(1) + 3/((1)+ 2) = 5 + 1 = 6
w₂= 5(2) + 3/((2)+ 2) = 10 + 3/4 = 43/4
w₃ = 5(3) + 3/((3)+ 2) = 15 + 3/5 = 78/5
w₄= 5(4) + 3/((4)+ 2) = 20 + 3/6 = 20 + 1/2 = 41/2
Tn = √(n + 6)
t₀ = √((0) + 6)= √6
t₁ = √((1) + 6)= √7
t₂= √((2) + 6)= √8
t₃= √((3) + 6)= √9 = 3
t₄= √((4) + 6)= √10
Up = p³ - 4p + 7
p₀= (0)³ - 4(0) + 7 = 7
p₁ = (1)³ - 4(1) + 7 = 1 - 4 + 7 = 4
p₂= (2)³ - 4(2) + 7 = 8 - 8 + 7 = 7
p₃ =(3)³ - 4(3) + 7 = 27 - 12 + 7 = 22
p₄= (4)³ - 4(4) + 7 = 64 - 16 + 7 = 55
Un = 4 × 3ⁿ
u₀ = 4 × 3⁰ = 4 × 1 = 4
u₁ = 4 × 3¹ = 4 × 3 = 12
u₂ =4 × 3² = 4 × 9 = 36
u₃ =4 × 3³ = 4 × 27 = 108
u₄ =4 × 3⁴ = 4 × 81 = 324
Un = 3/n + 2
u₁= 3/(1) + 2 = 3 + 2 = 5
u₂ = 3/(2) + 2 = 3/6 + 2 = 1/2 + 2 = 5/2
u₃ = 3/(3) + 2 = 1 + 2 = 3
u₄ = 3/(4) + 2 = 3/4 + 8/4 = 11/4
u₅ = 3/(5) + 2 = 3/5 + 10/5 = 13/5