Sagot :
Réponse :
Bonsoir,
Explications étape par étape :
[tex]1)\\Soit\ P(x)=ax^2+bx+c\\\blacklozenge\ a)\ P(x+1)-P(x)=a(x+1)^2+b(x+1)+c-(ax^2+bx+c)=2ax+a+b\\\blacklozenge\ b)\ P(x+1)-P(x)=x \\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{2}\\b&=&-a=-\dfrac{1}{2}\\\end {array} \right.\\\\\Rightarrow\ \boxed{P(x)=\dfrac{x^2}{2}-\dfrac{x}{2}+c}\\\\\\1=P(2)-P(1)\\2=P(3)-P(2)\\3=P(4)-P(3)\\...\\n-1=P(n)-P(n-1)\\n=P(n+1)-P(n)\\\Rightarrow\ S_1=1+2+3+...+n=P(n+1)-P(1)[/tex]
[tex]S_1=\dfrac{(n+1)^2}{2}-\dfrac{n+1}{2}+c-(\dfrac{1}{2}-\dfrac{1}{2}+c)\\\\\\\boxed{S_1=\dfrac{n(n+1)}{2}}\\[/tex]
[tex]2)\\Soit\ Q(x)=ax^3+bx^2+cx+d\\\blacklozenge\ a)\ Q(x+1)-Q(x)=a(x+1)^3+b(x+1)^2+c(x+1)+d-(ax^3+bx^2+cx+d)=3ax^2+(3a+2b)x+a+b+c+d\\\blacklozenge\ b)\ Q(x+1)-Q(x)=x^2 \\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{3}\\b&=&-\dfrac{1}{2}\\c&=&\dfrac{1}{6}\\\end {array} \right.\\\\\\\Rightarrow\ \boxed{Q(x)=\dfrac{x^3}{3}-\dfrac{x^2}{2}+\dfrac{x}{6}+d}\\\\\\1^2=Q(2)-Q(1)\\2^2=Q(3)-Q(2)\\3^2=Q(4)-Q(3)\\...\\(n-1)^2=Q(n)-Q(n-1)\\n^2=Q(n+1)-Q(n)\\[/tex]
[tex]\Rightarrow\ S_1=1^2+2^2+3^2+...+n^2=Q(n+1)-Q(1)\\=\dfrac{(n+1)^3}{3}-\dfrac{(n+1)^2}{2}+\dfrac{n+1}{6}+d-(\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{6}+d)\\\\=\dfrac{n+1}{6}(2(n+1)^2-3(n+1)+1)\\\\=\dfrac{n+1}{6}(2n^2+n)\\\\\boxed{S_2=\dfrac{n(n+1)(2n+1)}{6}}\\[/tex]
[tex]3)\\Soit\ R(x)=ax^4+bx^3+cx^2+dx+e\\\blacklozenge\ a)\ R(x+1)-R(x) =a(x+1)^4+b(x+1)^3+c(x+1)^2+d(x+1)+e-(ax^4+bx^3+cx^2+dx+e)\\=4ax^3+6ax^2+4ax+a+3bx^2+3bx+b+2cx+c+d\\=4ax^3+(6a+3b)x^2+(4a+3b+2c)x+a+b+c+d\\\blacklozenge\ b)\ R(x+1)-R(x)=x^3 \\\\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{4}\\b&=&-\dfrac{2}{4}\\c&=&\dfrac{1}{4}\\d&=&0\end {array} \right.\\\\\\[/tex]
[tex]\Rightarrow\ R(x)=\dfrac{x^4}{4}-2\dfrac{x^3}{4}+\dfrac{x^2}{4}+e\\R(1)=\dfrac{1}{4}-2\dfrac{1}{4}+\dfrac{1}{4}+e=e\\\\1^3=R(2)-R(1)\\2^3=R(3)-R(2)\\3^3=R(4)-R(3)\\...\\(n-1)^3=R(n)-R(n-1)\\n^3=R(n+1)-R(n)\\\Rightarrow\ S_3=1^3+2^3+3^3+...+n^3=R(n+1)-R(1)\\=\dfrac{(n+1)^4}{4}-2\dfrac{(n+1)^3}{4}+\dfrac{(n+1)^2}{4}\\=\dfrac{(n+1)^2}{4}((n+1)^2-2(n+1)+1)\\=\dfrac{(n+1)^2}{4}((n+1)-1)^2)\\\\\boxed{S_3=\dfrac{n(n+1)}{2}^2=S_1^2}[/tex]