👤

Bonjour, Soit n appartient N On souhaite calculer la somme des n premiers entiers naturels et la somme de leur carré.
On note S1 = 1+2+3+ ... + (n-1)+n et
S2 = 12 +22 +32 + ... +(n-1)² + n²
1. Soit P un trinôme tel que, pour tout réel x:
P(x) = ax² + bx+c, où a, b et c sont des réels et a est différent de 0.
a. Pour tout réel x, exprimer P(x+1) - P(x) en fonction de x, a, b et c
b. Déterminer a, b et c pour que, pour tout x appartient à R,
P(x+1)- P(x)=x.
c. Démontrer que S1 = P(n+1) - P(1) et en déduire S1 =(n(n+1))÷( 2)
2. Soit Q un polynome de degré 3 tel que, pour tout réel x, Q(x) = ax³ + bx²+ cx +d , où a, b, c et d sont des réels et a est différent de 0.
a. Déterminer a, b, c et d pour que, pour tout x appartient à R , Q(x+1) - Q(x)=x²
b. Démontrer que S2 = Q(n+1) - Q(1) et en déduire S2 = (n(n+1)(2n+1))÷6.
3.En s'inspirant des questions précédentes, trouver une formule pour la somme S3= 1³+2³+3³ +... + (n-1)³+n³.
merci d'avance ​

Bonjour Soit N Appartient N On Souhaite Calculer La Somme Des N Premiers Entiers Naturels Et La Somme De Leur Carré On Note S1 123 N1n Et S2 12 22 32 N1 N 1 Soi class=

Sagot :

CAYLUS

Réponse :

Bonsoir,

Explications étape par étape :

[tex]1)\\Soit\ P(x)=ax^2+bx+c\\\blacklozenge\ a)\ P(x+1)-P(x)=a(x+1)^2+b(x+1)+c-(ax^2+bx+c)=2ax+a+b\\\blacklozenge\ b)\ P(x+1)-P(x)=x \\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{2}\\b&=&-a=-\dfrac{1}{2}\\\end {array} \right.\\\\\Rightarrow\ \boxed{P(x)=\dfrac{x^2}{2}-\dfrac{x}{2}+c}\\\\\\1=P(2)-P(1)\\2=P(3)-P(2)\\3=P(4)-P(3)\\...\\n-1=P(n)-P(n-1)\\n=P(n+1)-P(n)\\\Rightarrow\ S_1=1+2+3+...+n=P(n+1)-P(1)[/tex]

[tex]S_1=\dfrac{(n+1)^2}{2}-\dfrac{n+1}{2}+c-(\dfrac{1}{2}-\dfrac{1}{2}+c)\\\\\\\boxed{S_1=\dfrac{n(n+1)}{2}}\\[/tex]

[tex]2)\\Soit\ Q(x)=ax^3+bx^2+cx+d\\\blacklozenge\ a)\ Q(x+1)-Q(x)=a(x+1)^3+b(x+1)^2+c(x+1)+d-(ax^3+bx^2+cx+d)=3ax^2+(3a+2b)x+a+b+c+d\\\blacklozenge\ b)\ Q(x+1)-Q(x)=x^2 \\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{3}\\b&=&-\dfrac{1}{2}\\c&=&\dfrac{1}{6}\\\end {array} \right.\\\\\\\Rightarrow\ \boxed{Q(x)=\dfrac{x^3}{3}-\dfrac{x^2}{2}+\dfrac{x}{6}+d}\\\\\\1^2=Q(2)-Q(1)\\2^2=Q(3)-Q(2)\\3^2=Q(4)-Q(3)\\...\\(n-1)^2=Q(n)-Q(n-1)\\n^2=Q(n+1)-Q(n)\\[/tex]

[tex]\Rightarrow\ S_1=1^2+2^2+3^2+...+n^2=Q(n+1)-Q(1)\\=\dfrac{(n+1)^3}{3}-\dfrac{(n+1)^2}{2}+\dfrac{n+1}{6}+d-(\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{6}+d)\\\\=\dfrac{n+1}{6}(2(n+1)^2-3(n+1)+1)\\\\=\dfrac{n+1}{6}(2n^2+n)\\\\\boxed{S_2=\dfrac{n(n+1)(2n+1)}{6}}\\[/tex]

[tex]3)\\Soit\ R(x)=ax^4+bx^3+cx^2+dx+e\\\blacklozenge\ a)\ R(x+1)-R(x) =a(x+1)^4+b(x+1)^3+c(x+1)^2+d(x+1)+e-(ax^4+bx^3+cx^2+dx+e)\\=4ax^3+6ax^2+4ax+a+3bx^2+3bx+b+2cx+c+d\\=4ax^3+(6a+3b)x^2+(4a+3b+2c)x+a+b+c+d\\\blacklozenge\ b)\ R(x+1)-R(x)=x^3 \\\\\Rightarrow \left\{\begin{array}{ccc}a&=&\dfrac{1}{4}\\b&=&-\dfrac{2}{4}\\c&=&\dfrac{1}{4}\\d&=&0\end {array} \right.\\\\\\[/tex]

[tex]\Rightarrow\ R(x)=\dfrac{x^4}{4}-2\dfrac{x^3}{4}+\dfrac{x^2}{4}+e\\R(1)=\dfrac{1}{4}-2\dfrac{1}{4}+\dfrac{1}{4}+e=e\\\\1^3=R(2)-R(1)\\2^3=R(3)-R(2)\\3^3=R(4)-R(3)\\...\\(n-1)^3=R(n)-R(n-1)\\n^3=R(n+1)-R(n)\\\Rightarrow\ S_3=1^3+2^3+3^3+...+n^3=R(n+1)-R(1)\\=\dfrac{(n+1)^4}{4}-2\dfrac{(n+1)^3}{4}+\dfrac{(n+1)^2}{4}\\=\dfrac{(n+1)^2}{4}((n+1)^2-2(n+1)+1)\\=\dfrac{(n+1)^2}{4}((n+1)-1)^2)\\\\\boxed{S_3=\dfrac{n(n+1)}{2}^2=S_1^2}[/tex]

© 2024 IDNLearn. All rights reserved.