écrire x / y sous la forme d'un produit de puissances. 

 

a/ pour x = 2^7 * 5^9 et y 2^2 * 5^3

 

Si il y aurait des explications ça serait mieu

Merci de votre aide



Sagot :

2^7 divise par 2^2 cela fait 2^(7-2) soit 2^5

5^9 divisé par 5^3 : 5^(9-3)=5^6

donc x/y vaut 2^5 fois 5^6 ou 5 fois 10^5 soit 500 000

Coucou,

 

Ecrire x / y sous la forme d'un produit de puissances, veut dire qu'à la fin tu obtiendras, quelque chose du genre a puissance qqch x b puisssance quelque chose

 

 

x / y =  (2^7 * 5^9) 2^2 * 5^3  puisque  x = 2^7 * 5^9 et y =2^2 * 5^3

        = 2^7/2^2  * 5^9/5^3

        =2^(7-2) * 5^(9-3) car quand on a des puissances et des divisisions, il faut soustraire ce qui'il y a en haut par ce qu'il y a en bas, en ce qui concerne les puissances. ET aussi, pour faire cette soustraction il faut qu'il y ait le meme nombre. Par exemple, ici, on peut soustraire car en haut et en bas c'est un 2 et pour l'autre en haut et en bas c'est un 5.

        = 2^5 * 5^6

 ici, on ne peut plus le simplifier, car, en fait, quand on a des multiplications, on additionne ses puissances, mais pour cela, il faut que par exemple , ici, il y ait le meme nombre, 2^5 * 2^6 ou 5^5*5^6, mais ce n'est pas le cas.

 

Compris ?

 

Voilà ;)