Bonjour est ce que quelqu'un pourrait m'aider pour cet exercice SVP surtout pour la dernière question.​

Bonjour Est Ce Que Quelquun Pourrait Maider Pour Cet Exercice SVP Surtout Pour La Dernière Question class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

Je te fais tout .

1)

f(x)=2 + 3/(x-4)

On réduit au même dénominateur :

f(x)=[2(x-4)+3] / (x-4)

f(x)=(2x-5) / (x-4)

2)

Soient :

a < b < 4

f(a)=2 + 3/(a-4)

f(b)=2 + 3/(b-4)

f(a) - f(b)=2 + 3/(a-4) - 2 -3/(b-4)

f(a)-f(b)=3/(a-4) - 3/(b-4)

On réduit au même déno :

f(a)-f(b)=[3(b-4)-3(a-4)] / (a-4)(b-4)

f(a)-f(b)=3(b-a) / (a-4)(b-a)

On est parti de : a < b < 4 qui donne :

a < 4 donc : (a-4) < 0

b < 4 donc : (b-4) < 0

a < b donc (b-a) > 0

Dans un quotient : deux facteurs négatifs et un facteur positif donnent un quotient positif. OK ?

Donc :

f(a)-f(b) > 0

Donc :

f(a)  > f(b)

Sur ]-inf;4[  on est parti de a < b pour arriver à f(a) > f(b) , ce qui prouve que la fct f(x) est décroissante sur cet intervalle.

3)

Je ne sais pas ce que tu as vu sur les fcts en cours .

Soit h(x)=(x+4)² qui s'écrit aussi :

h(x)=x²+8x+16

Tu dois savoir que la fct f(x)=ax²+bx+c avec a < 0 est décroissante sur ]-inf;-b/2a].

Ici :-b/2a=-8/2=-4

h(x) est donc décroissante sur ]-inf;-4].

Si tu n'as vu que la forme canonique :

f(x)=a(x-α)²+β , tu sais que si a > 0 , f(x) est décroissante sur ]-inf;α].

Ici :

h(x)=(x-(-4)]² et donc α=-4 .

h(x) est donc décroissante sur ]-inf;-4].

g(x)=(x+4)²+f(x)

g(x) est la somme de deux fcts décroissantes sur ]-inf;-4[ , donc g(x) est décroissante sur cet intervalle.