1.
DEVELOPPER LES EXPRESSIONS SUIVANTES :
a/ (2x+4) (-5x-3) - (x2-x+1) =
b/ (4X-3)2 – (2x-5)(6x+1) =
c/(x-2)2 – (x-3)(2x+5) =


Sagot :

Réponse :

Hello voici ma réponse :

a) (2x+4)(−5×3)−(x2−x+1)

Multiplier −5 et 3 pour obtenir −15.

(2x+4)(−15)−(x  

2 −x+1)

Utiliser la distributivité pour multiplier 2x+4 par −15.

−30x−60−(x2 −x+1)

Pour trouver l’opposé de x  2 −x+1, recherchez l’opposé de chaque terme.

−30x−60−x  2 −(−x)−1

L’inverse de −x est x.

−30x−60−x 2 +x−1

Combiner −30x et x pour obtenir −29x.

−29x−60−x  2 −1

Soustraire 1 de −60 pour obtenir −61.

−29x−61−x  2

​b) (4x−3)2−(2x−5)(6x+1)

Utiliser la distributivité pour multiplier 4x−3 par 2.

8x−6−(2x−5)(6x+1)

Appliquez la distributivité en multipliant chaque terme de 2x−5 par chaque terme de 6x+1.

8x−6−(12x au carré+2x−30x−5)

Combiner 2x et −30x pour obtenir −28x.

8x−6−(12x  au carré−28x−5)

Pour trouver l’opposé de 12x  au carré−28x−5, recherchez l’opposé de chaque terme.

8x−6−12x  au carré−(−28x)−(−5)

L’inverse de −28x est 28x.

8x−6−12x  au carré+28x−(−5)

L’inverse de −5 est 5. 8x−6−12x  au carré  +28x+5

Combiner 8x et 28x pour obtenir 36x.

36x−6−12x  au carré+5

Additionner −6 et 5 pour obtenir −1.

36x−1−12x au carré

c) (x−2)2−(x−3)(2x+5)

Utiliser la distributivité pour multiplier x−2 par 2.

2x−4−(x−3)(2x+5)

Appliquez la distributivité en multipliant chaque terme de x−3 par chaque terme de 2x+5.

2x−4−(2x  au carré +5x−6x−15)

Combiner 5x et −6x pour obtenir −x.

2x−4−(2x  au carré  −x−15)

Pour trouver l’opposé de 2x  au carré−x−15, recherchez l’opposé de chaque terme.

2x−4−2x au carré−(−x)−(−15)

L’inverse de −x est x.

2x−4−2x  au carré +x−(−15)

L’inverse de −15 est 15.

2x−4−2x  au carré +x+15

Combiner 2x et x pour obtenir 3x.

3x−4−2x  au carré+15

Additionner −4 et 15 pour obtenir 11.

3x+11−2x au carré

Voila j'espère t'avoir aidé, bon courage ☺

Explications étape par étape :