bonjour, j'ai un calcul de forme canonique à résoudre, merci d'avance à celui ou celle qui m'aidera x)
h(x) = 2x^2 - 12x + 33​


Sagot :

VINS

bonsoir

h (x) = 2 x² - 12 x + 33

α = - b / 2a

α = 12 /4 = 3

β = 2 * 3² - 12*3 + 33 = 18 - 36 + 33 = 15

h (x) = 2 ( x - 3 )² + 15

bjr

h(x) = 2x² - 12x + 33

         •  on prend les 2 premiers termes 2x² - 12x

         • on met le coefficient de x en facteur   2(x² - 6x)

         • dans les  ( )   x² - 6x est le début du développement de (x - 3)²

                          (x - 3)² = x² - 6x + 9 =

on repart du début

2x² - 12x + 33 = 2(x² - 6x) + 33

                      = 2(x² - 6x + 9 - 9) + 33

                     = 2 [(x - 3)² - 9] + 33

                    = 2(x - 3)² - 18 + 33

                    = 2(x - 3)² + 15