Sagot :
bonjour
f (x) = x² - 6x + 5
f(0) = 5
f ( 3) = 3 ² - 6 *3 + 5 = 9 - 18 + 5 = - 4
f ( 1) = 1 ² - 6 + 5 = 1 - 1 = 0
x² - 6 x + 5
Δ = ( - 6 )² - 4 ( 1 * 5 ) = 36 - 20 = 16 = 4 ²
x 1 = ( 6 - 4 ) / 2 = 2/2 = 1
x 2 = ( 6 + 4 ) / 2 = 5
racines = 1 et 5
f (x) = 5
x² - 6 x + 5 = 5
x² - 6 x + 5 - 5 = 0
x² - 6 x = 0
x (x - 6 ) = 0
x = 0 ou 6
f (x) = - 3
x² - 6 x + 5 = - 3
x² - 6 x + 5 + 3 = 0
x² - 6 x + 8 = 0
(x - 2 ) ( x - 4 ) = 0
x = 2 ou 4
Bonjour,
Soit f(x)= x²-6x+5
Calculer
f(0)= 0²-6(0)+5= 5
f(3)= 3²-6(3)+5= 9-18+5= -4
f(1)= 1²-6(1)+5= 1-6+5= 0
Les racines de f:
x²-6x+5 <=> x²-x-5x+5 <=> (x²-x)-5x+5 <=> x(x-1)-5(x-1) <=> (x-1)(x-5)
donc les racines sont : x= 1 ou x= 5
Résoudre:
f(x)= 5
x²-6x+5= 5
x²-6x+5-5= 0
x²-6x= 0
x(x-6)= 0
x= 0 ou x= 6
S= { 0; 6 }
f(x)= -3
x²-6 x +5= -3
x²-6x+5+3= 0
x²-6x+8= 0
x²-2x-4x+8= 0
x(x-2)-4(x-2)= 0
(x-2)(x-4)= 0
x= 0 ou x= 4
S= { 0 ; 4 }
Sinon utilise le discriminant Δ= b²-4ac et chercher x1= (-b-√Δ)/2a
et x2= (-b+√Δ)/2a