Bonjour,
On développe:
1/n-2/(n+1)+ 1/(n+2)
[ (n+1)(n+2) - 2(n(n+2))+n(n+1) ]/ n(n+1)(n+2)
(n²+n+2n+2-2(n²+2n)+n²+n) / n(n+1)(n+2)
(n²+3n+2-2n²-4n+n²+n/ n(n+1)(n+2)
2 / n(n+1)(n+2)
donc 2 / n(n+1)(n+2)= 1/n-2/(n+1)+ 1/(n+2)