Sagot :
Réponse:
Bonjour
Explications étape par étape:
A= 2(3x+1) -5(2x-3)
A= 2×3x+2×1 -5×2x -5×(-3)
A= 6x+2-10x+15
A= 6x-10x+15+2
A= -4x+17
B= (3x+1)(-2x+4)
B= 3x×(-2x)+3x×4 +1×(-2x)+1×4
B= -6x²+12x-2x+4
B= -6x²+10x+4
C= (x+2)(x-2) - ( 2x-1)² ----->des identités remarquables (a+b)(a-b) = a²-b² et (a-b)²= a²-2ab+b²
C= x²-2² - ( ( 2x)² -2×2x×1 +1²)
C= x²-4 - ( 4x²-4x+1)
C= x²-4 -4x²+4x-1
C= x²-4x²+4x-4-1
C= -3x²+4x-5
A=2(3x+1)-5(2x-3)
=((2×3x)+(2×1))-((5×2x)-(5×3))
=(6x+2)-(10x-15)
=6x+2-10x+15
=-4x+17
B=(3x+1)(-2x+4)
=(3x×(-2x))+(3x×4)+(1×(-2x))+(1×4)
=-6x^2+12x+(-2x)+4
=-6x^2+10x+4
C=(x+2)(x-2)-(2x-1)^2
=(x×x)-(x×2)+(2×x)-(2×2) - ((2x×2x)-(2x×1)-(1×2x)+(1×1))
=x^2-2x+2x-4 - 4x^2+2x+2x-1
=-3x^2+4x-5
Explications :Appliquer la distributivité .