Sagot :
Bonjour,
1)
[tex]\overrightarrow{u}=\left(\begin{array}{c}-2+4\sqrt{2}\\ 1\end{array}\right)\\\\\overrightarrow{v}=\left(\begin{array}{c}-2+\sqrt{2}\\ \sqrt{2}\end{array}\right)\\\\\\det(\overrightarrow{u},\overrightarrow{v})=\begin{bmatrix}-2+4\sqrt{2} & -2+\sqrt{2} \\1 & \sqrt{2} \end{bmatrix}\\\\=-2\sqrt{2} +4*2 +2 -\sqrt{2}\\\\=10-3+\sqrt{2}\\[/tex]
2)
[tex]A=(-4,-2)\\B=(1,4)\\\\\overrightarrow{AB}=\left(\begin{array}{c}1+4\\4+2\end{array}\right)=\left(\begin{array}{c}5\\6\end{array}\right)\\\\\overrightarrow{AM}=-3*\overrightarrow{BM} \\\\\Longrightarrow \overrightarrow{AM}+\overrightarrow{MB}=-3*\overrightarrow{BM}+\overrightarrow{MB}\\\\\overrightarrow{AB}=-4*\overrightarrow{BM} \\\\\overrightarrow{BM}=\dfrac{-\overrightarrow{AB}}{4}\\\\[/tex]
[tex]\overrightarrow{BM}=\left(\begin{array}{c}x-1\\y-4\end{array}\right)=-\frac{1}{4} \left(\begin{array}{c}5\\ 6\end{array}\right)\\\\x=1+\dfrac{-5}{4} \\y=4-\dfrac{6}{4} \\\\\boxed{x=\dfrac{-1}{4} }\\\boxed{y=\dfrac{11}{2} }\\[/tex]
3)
[tex]\overrightarrow{u}=\left(\begin{array}{c}-7\\ -4\end{array}\right)\\\\A=(8,4)\\B=(x,-12)\\\overrightarrow{AB}=\left(\begin{array}{c} x-8\\ -12-4\end{array}\right)\\\\\\\overrightarrow{u}=k*\overrightarrow{AB}\\\\\left\{\begin{array}{ccc}k*(x-8)&=&-7\\k(-16)&=&-4 \\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}k&=&\dfrac{1}{4}\\\\x&=&-20\\\end{array}\right.\\[/tex]