Sagot :
Réponse :
Explications étape par étape :
les points D,F,A,B et E,G,A,C sont alignés et que (DE) // (FG),
DE = 8,1 cm
GE = 6,8 cm
AG= 4 cm
AF = 5 cm
FG = 3 cm
AC = 5 cm
AB = 6,25 cm
AE = AG + GE = 4 + 6,8 = 12,8 cm
1) dans le triangle AFG on a
FG^2 + GA^2 = 3^2 + 4^2 = 9 + 16 = 25
et FA^2 = 5^2 = 25
Donc d après la réciproque de Pythagore, on a bien FG^2 + GA^2 = FA^2 et donc le triangle AFG est bien un triangle rectangle en G
2) dans les triangles AGF et AED,
Comme les points D,F,A,B et E,G,A,C sont alignés et que (DE) // (FG), et d après le théorème de Thalès, on a les rapports égaux suivants
AG/AE = AF/AD= GF/ED
Application numérique on met les valeurs connues
4/12,8 =5/AD = 3/8,1
On cherche AD
On sait que 3 AD = 5 x 8,1
Donc AD = 5 x 8,1 / 3
AD = 13,5 cm
3) dans les triangles AFG et ABC
les points F,A,B et G,A,C sont alignés et on calcule les rapports suivants
AF/ AB = 5/6,25 = 0,8
AG/AC = 4/5= 0,8
Donc d'après le théorème de Thalès, on les droites (FG) et (BC) qui sont parallèles