Sagot :
Réponse :
Explications étape par étape :
1)sur le graphique les solutions de f(x)=g(x) correspondent aux abscisses de leurs points d'intersection on lit 2 solutions x=1/3 etx=6
Pour f(x)<g(x) on regarde l'intervalle où la courbe de f(x) se trouve en-dessous de celle de g(x) cela correspond à l'intervalle:]1/3;6[
2)f(x)=g(x) (x-5)(x-2)=(0,5x +1)(7-x) (x-5)(x-2) -( 0,5x +1)(7-x) =0
x²-2x-5x +10 -(3,5x-0,5x²+7 -x)=0
x² -7x + 10- 3,5x +0,5x² -7+x =0
1,5x² - 9,5x + 3=0 discriminant:9,5²-4x3x1,5
90,25 -18=72,25
rac de delta=V72,28,5 on calcule les 2 racines on trouve 1/3 et 6
S={1/3;6}
3)g(x) = (0,5x +1) (7-x) a été calculé ds 2) :3,5x -0,5x² +7 -x=-0,5x²+2,5x+7
bonus -0,5x²+2,5x +7=0,5x²+0,5x+8
-0,5x²-0,5x² +2,5x -0,5x +7 -8=0
-x² +2x -1 =0 on remarque 2 carrés:x² et 1
on factorise :-1 -( x² -2x +1)=0 on reconnaît ds la () : a²-2ab+b²
-( x -1 ) ²=0
1solution double: x-1=0 donc x=1 S={ 1]
90,25-18