bonjour jai un dm a rendre pour jeudi et je bloque sur un exercice le voici.
1) demontrer que pour tout n non nul,2 sur n est egal 1 sur n plus 1 sur 2n plus 1 sur 3n plus 1 sur 6n
Pourriez vous me repondre svp merci beaucoup


Sagot :

Soit [tex]n[/tex] un entier non nul.

[tex]\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} = \dfrac{1 \times 6}{n \times 6} + \dfrac{1 \times 3}{2n \times 3} + \dfrac{1 \times 2}{3n \times 2} + \dfrac{1}{6n} \\\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} =\dfrac{6}{6n} + \dfrac{3}{6n} + \dfrac{2}{6n} + \dfrac{1}{6n} \\\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} =\dfrac{6+3+2+1}{6n}\\\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} =\dfrac{12}{6n}\\[/tex]

[tex]\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} =\dfrac{6 \times 2}{6 \times n}\\\dfrac{1}{n} + \dfrac{1}{2n} + \dfrac{1}{3n} + \dfrac{1}{6n} =\dfrac{2}{n}[/tex]

CAYLUS

Bonsoir,

[tex]\forall\ n \in \mathbb{R}_0\ :\\\dfrac{1}{n} +\dfrac{1}{2n} +\dfrac{1}{3n} +\dfrac{1}{6n} \\\\=\dfrac{6}{6n} +\dfrac{3}{6n} +\dfrac{2}{6n} +\dfrac{1}{6n} \\\\=\dfrac{12}{6n}\\\\=\dfrac{2}{n}\\[/tex]