Sagot :
Réponse :
Bonjour
Explications étape par étape :
1)
Tu sais sûrement appliquer Pythagore au triangle ABD rectangle en A.
Ce qui donne :
BD²=3²+4²=..
A la fin tu trouves :
BD=5 cm.
2)
AIRE BDF=5 x 5 /2=12.5 cm²
Aire ABD=3 x 4 /2=6 cm²
Aire ABDF=12.5 + 6 = 18.5 cm²
3)
Le triangle FBD est rectangle-isocèle en D donc ses angles aigus valent chacun 90°/2=45°.
Angle FBD=45°.
4)
Le rapport k est négatif car A' est au-delà de O par rapport à A.
k=-A'D'/AD
k=-1.2/3
k=-0.4
Mais on utilisera k=0.4 pour les calculs ci-dessous.
5)
A'B'=4*0.4=1.6 cm
B'D'=5 x 0.4= 2 cm.
On n'a pas calculé BF dans le triangle BDF rectangle en D.
BF²=5²+5²=50
BF=√50=√( 25 x 2 )=5√2
B'F'=5√2 x 0.4=2√2
D'F'=5 x 0.4 = 2 cm
A'B'D' rectangle ?
D'une part :
A'B'²+A'D'²=1.6²+1.2²=4
D'autre part :
B'D'²=2²=4
Donc :
B'D'²=A'B'²+A'D' qui prouve d'après la réciproque de Pythagore que ...
Tu fais pareil pour le triangle B'D'F'.
7)
Pour passer de l'aire ABFD à l'aire A'B'F'D' , on multiplie l'aire de ABFD par k².
Aire A'B'F'D' =18.5 x 0.4²=2.96 cm²