👤

Sagot :

Réponse :

1) déterminer la relation entre h et r

        V = πr² x h = 1000   ⇔  h = 1000/πr²

2) montrer que  S(r) = 2πr² + 2000/r

la surface totale de métal est : S(r) = πr²+πr² + 2πr x h

                                                         = 2πr² + 2πr x 1000/πr²

                                                         = 2πr² + 2000/r

3) déterminer une valeur approchée à 0.01 près des dimensions de la boite

        après avoir établi un tableau de valeur la valeur de r ≈ 5.42 cm donnant une surface minimale

   h = 1000/πr² = 1000/π x 5.42² ≈ 10.84 cm

quel est le rapport  h/D = 10.84/5.42 = 2

4) démontrer la conjecture, pour cela :

a) calculer la fonction dérivée S' de S en précisant dans quel intervalle varie r

       S(r) = 2πr² + 2000/r

        S'(r) = 4πr - 2000/r²

                = (4πr³ - 2000)/r²     ⇔ S ' (r) = 0  ⇔ 4πr³ - 2000 = 0

             r³ = 2000/4π = 500/π  ⇔ r = ∛(500/π) ≈ 5.42

                  r ∈ [5.42 ; 10.84]

            b)  S'(r) =  (4πr³ - 2000)/r²   or  r² > 0

                       or  pour r  ≥ 5.42    ⇒  S'(r) ≥  0  sur l'intervalle [5.42 ; 10.84]

Explications étape par étape :

Other Questions

© 2024 IDNLearn. All rights reserved.