Sagot :
bonsoir
1) exprimer BM en fonction de BC :
BM = 1/2 BC (M milieu de BC)
2) calculer les coordonnées des points M, D et E :
A(1;1) B(5;-1) C(3;5)
xM = (xB + xC)/2 = (5 + 3)/2 = 8/2 = 4
yM = (yB + yC)/2 = (-1 + 5)/2 = 4/2 = 2
M(4;2)
AD = 3/2 AB
xD - xA = 3/2(xB - xA)
xD = 3/2 xB - 3/2 xA + xA
xD = 3/2 * 5 - 3/2 * 1 + 1
xD = 15/2 - 3/2 + 1
xD = 12/2 + 1
xD = 6 + 1
xD = 7
yD - yA = 3/2(yB - yA)
yD = 3/2 yB - 3/2 yA + yA
yD = 3/2 * (-1) - 3/2 * 1 + 1
yD = -3/2 - 3/2 + 1
yD = -6/2 + 1
yD = -3 + 1
yD = -2
D(7;-2)
AE = 3/4 AC
xE - xA = 3/4 (xC - xA)
xE = 3/4 xC - 3/4 xA + xA
xE = 3/4 * 3 - 3/4 * 1 + 1
xE = 9/4 - 3/4 + 1
xE = 6/4 + 1
xE = 3/2 + 2/2
xE = 5/2
yE - yA = 3/4(yC - yA)
yE = 3/4 yC - 3/4 yA + yA
yE = 3/4 * 5 - 3/4 * 1 + 1
yE = 15/4 - 3/4 + 1
yE = 12/4 + 1
yE = 3 + 1
yE = 4
E(5/2;4)
3) démontrer que les points E, M et D sont alignés :
EM (4 - 5/2 ; 2 - 4)
EM (3/2 ; -2)
ED (7 - 5/2 ; -2 - 4)
ED (9/2 ; -2)
Si a = (yM - yE)/(xM - xE) = (yD - yE)/(xD - xE) = (yD - yM)/(xD - xM) alors E, M et D sont alignés
M(4;2) D(7;-2) E(5/2;4)
(yM - yE)/(xM - xE) = (2 - 4)/(4 - 5/2) = -2/(3/2) = -4/3
(yD - yE)/(xD - xE) = (-2 - 4)/(7 - 5/2) = -6/(9/2) = -12/9 = -4/3
(yD - yM)/(xD - xM) = (-2 - 2)/(7 - 4) = -4/3
Donc les points M, D et E sont alignés