👤

Sagot :

Bonsoir,

1)

f n'est pas définie en 0 (division par 0).

f n'est donc pas définie sur R mais sur R* (privé de 0).

2)

Voir ci-joint. Les tracés sont en pointillés.

f(2) = 4 (rouge).

f(3) = 4,33 (vert).

Il n'y a qu'un seul antécédent de 4 par f qui est x = 2 (orange).

Il y a deux antécédents de -5 par f qui sont x = - 1 et x = -5 (bleu foncé).

3)

Voir ci-joint.

4)

[tex]f(2) = 2 + \frac{4}{2} = 4[/tex]

[tex]f(3) = 3 + \frac{4}{3} = \frac{13}{3} \simeq 4,33[/tex]

5)

Les tracés sont en trait plein et en violet.

f(x) = 5 <=> x = 1 ou x = 4.

6)

Tracer la droite y = x et vérifier quand y = f(x) = x (donc quand la droite coupe la fonction).

Le tracé est en trait plein et en rose.

On remarque qu'il s'agit d'une asymptote à la courbe représentative de f, elle ne coupe jamais f mais f semble s'en approcher au niveau des infinis.

7)

[tex]f(x) = x \Leftrightarrow x + \frac{4}{x}= x \Leftrightarrow \frac{4}{x} = 0 \Leftrightarrow 4 = 0[/tex]

On tombe bien sur une réponse absurde, il n'y a pas de solution comme on l'a vu à la question précédente.

Bonne soirée,

Thomas

View image THOMAS756
View image THOMAS756

© 2024 IDNLearn. All rights reserved.