Réponse :
Bonjour
Explications étape par étape
1)
En 2020 :
50-50 x 2/100=...
2)
Une valeur qui baisse de 2% est multipliée par (1-2/100)=0.98.
Donc d'une année sur l'autre la consommation est multipliée par 0.98 :
Ce qui prouve que la suite (C(n) est une suite géométrique de raison q=0.98 et de 1er terme C(0)=50.
3)
On sait alors que :
C(n)=C(0) x q^n soit :
C(n)=50 x 0.98^n
4)
En 2030 : n=2030-2019=11
C(11)=50 x 0.98^11 ≈ 40 m³
5)
D'après la question 4 , ce sera en 2031 avec n=12.
On vérifie :
C(12)=50 x 0.98^12 ≈ 39 m³
6)
Somme = 1er terme x (1-q^nb de termes) / (1-q)
De 0 à 11 , on a 12 termes .
Somme=50 x (1-0.98^12)/(1-0.98) ≈ 538538m
De 2019 à 2030 ,donc sur 12 années , une personne a consommé en moyenne au total 538m³ d'eau.