Sagot :
Réponse:
1) F(x) = 3x^2 - 3x + 2x - 2 + 21x + 15x^2 +14+ 10x
= 18x^2 + 30x + 12
2) f(x) = (3x + 2) [x - 1 + 7 + 5x]
= (3x + 2) (6x + 6)
= (3x + 2) 6(x + 1)
3) F(2) = (3 x 2 + 2) (2 - 1) + (3 x 2 + 2)(7 + 5 x 2)
= (6 + 2) x 1 + (6 + 2) (7 + 10)
= 8 + 8 x 17
= 8 + 136
= 144
F(-1)= (-3 + 2) (-1 - 1) + (-3 +2) (7 - 5)
= - 1 x (-2) + (-1) x 2
= 2 + (-2)
= 0
Réponse :
Explications étape par étape
Bonjour
Soit f(x) = (3x + 2)(x - 1) + (3x + 2)(7 + 5x)
1) Développer et réduire f(x).
f(x) = 3x^2 - 3x + 2x - 2 + 21x + 15x^2 + 14 + 10x
f(x) = 18x^2 + 30x + 12
2) Factoriser f(x).
f(x) = (3x + 2)(x - 1 + 7 + 5x)
f(x) = (3x + 2)(6x + 6)
f(x) = (3x + 2) * 6(x + 1)
f(x) = 6(3x + 2)(x + 1)
3) Calculer f(2) et f(-1).
f(2) = 6(3 * 2 + 2)(2 + 1)
f(2) = 6(6 + 2) * 3
f(2) = 6 * 8 * 3
f(2) = 144
f(-1) = 6(3 * (-1) + 2)(-1 + 1)
f(-1) = 6(-3 + 2) * 0
f(-1) = 0