Réponse :
Explications étape par étape
a^n/a^p = a^(n-p)
Bonjour
Tu peux simplifier ces fractions sans faire les calculs de puissances :
A = (2^3 x 3^4 x 5^4)/(2^6 x 3^2 x 5^2)
A = [3^(4-2) x 5^(4-2)] / [2^(6-3)]
A = (3^2 x 5^2) / 2^3
A = (9 x 25)/8
A = 225/8
B = (2 x 5)^2 x 3^(-2)
B = [2^2 x 5^2] / (3^2)
B = (4 x 25) / 9
B = 100/9
C = 6^7 / (2^4 x 3^5)
C = (2 x 3)^7 / (2^4 x 3^5)
C = (2^7 x 3^7) / (2^4 x 3^5)
C = 2^(7-4) x 3^(7-5)
C = 2^3 x 3^2
C = 8 x 9
C = 72
D = [(11^2)^(-3) x 2^(-2)] / (22^(-5))
D = [11^(2*(-3)) x 2^(-2)] / (11 x 2)^(-5)
D = [11^(-6) x 2^(-2)] / [11^(-5) x 2^(-5)]
D = 11^(-6+5) x 2^(-2+5)
D = 11^(-1) x 2^3
D = 2^3 / 11
D = 8/11