Réponse:
A=
[tex] \frac{ {4}^{3} \times {2}^{4} }{ {8}^{ - 2} } = \frac{ {( {2}^{2} )}^{3} \times {2}^{4} }{( {2}^{3})^{ - 2} } = \\ \frac{ {2}^{6} \times {2}^{4} }{ {2}^{ - 6} } = \frac{ {2}^{6 + 4} }{ {2}^{ - 6} } = \\ \frac{ {2}^{10} }{ {2}^{ - 6} } = {2}^{10 - ( - 6)} = \\ {2}^{16} [/tex]
B=
[tex] \frac{6 \times 50}{3} \times \frac{ {10}^{5} \times {10}^{ - 12} }{ {10}^{8} } = \\ \frac{300}{3} \times {10}^{5 + ( - 12) - 8} = \\ 100 \times {10}^{ - 15 } = \\ {10}^{2} \times {10}^{ - 15} = \\ {10}^{ 2- 15} = \\ {10}^{ - 13} [/tex]