Sagot :
Réponse :
Explications étape par étape
Bonsoir
Factoriser ;
A = 2(x - 2)(x + 1) + (x^2 - 4) - 3(1 - x)(4 - 2x)
A = 2(x - 2)(x + 1) + (x - 2)(x + 2) - 3(1 - x) * 2(2 - x)
A = 2(x - 2)(x + 1) + (x - 2)(x + 2) + 6(1 - x)(x - 2)
A = (x - 2)[2(x + 1) + x + 2 + 6(1 - x)]
A = (x - 2)(2x + 2 + x + 2 + 6 - 6x)
A = (x - 2)(-3x + 10)
☘️ Bonsoir ☺️
[tex]\rule{6cm}{1mm}[/tex]
• Factorisons l'expression A :
[tex]\boxed{A = 2(x - 2) (x + 1) + ({x}^{2} - 4) - 3(1 - x)(4 - 2x)}[/tex]
[tex]\boxed{A = 2(x - 2) (x + 1) + (x - 2) (x + 2) + 6(1 - x) ( - 2 + x)}[/tex]
[tex]\boxed{A = (x - 2) [2(x + 1) + (x + 2) + 6(1 - x) ]}[/tex]
[tex]\boxed{A = (x - 2) (2x + 2 + x + 2 + 6 - 6x) }[/tex]
[tex]\boxed{A = (x - 2) (2x + x - 6x + 10) }[/tex]
[tex]\boxed{\boxed{\blue{A = (x - 2) (- 3x + 10)} }}[/tex]
[tex]\rule{6cm}{1mm}[/tex]