Sagot :
On a
A=
[tex]5 + (1 + \frac{1}{8} ) \div \frac{3}{4} [/tex]
[tex]5 + ( \frac{1 \times 8}{1 \times 8} + \frac{1 \times 1}{8 \times 1} ) \div \frac{3}{4} [/tex]
[tex]5 + ( \frac{8}{8} + \frac{1}{8} ) \div \frac{3}{4} [/tex]
[tex]5 + ( \frac{8 + 1}{8} ) \div \frac{3}{4} [/tex]
[tex]5 + \frac{9}{8} \div \frac{3}{4} [/tex]
[tex]5 + \frac{9}{8} \times \frac{4}{3} [/tex]
[tex]5 + \frac{3}{2} [/tex]
[tex] \frac{5 \times 2}{1 \times 2} + \frac{3 \times 1}{2 \times1} [/tex]
[tex] \frac{10 + 3}{2} [/tex]
[tex] \frac{13}{2} [/tex]
bonjour
A=5+(1+1/8)÷3/4
=5+(8/8+1/8)÷3/4
=5+9/8x4/3
=5+36/24
=120/24+36/24
=156/24
=(156÷12)/(24÷12)
=13/2
3)B=3.2x10⁻³x5x(10²)³/0.04x10⁻²
=16x10³/0.04x10⁻²
=400x10⁵
=4x10⁷