Réponse :
Bonjour
Explications étape par étape
La droite passant par B a pour équation :
y=ax+b
Elle passe par B(3;0) donc on peut écrire :
0=a*3+b qui donne : b=-3a
Equation de la tgte : y=ax-3a
On va chercher une racine double à l'équation y=f(x) qui donne :
ax-3a=x²-3x+1
x²+x(-3-a)+1+3a=0
Δ=b²-4ac=[-(3+a)]²-4(1)(1+3a)
Racine double si Δ=0.
On résout donc :
9+6a+a²-4-12a=0
soit :
a²-6a+5=0
Nouveau Δ :
Δ=6²-20=16
√16=4
a1=(6-4)/2=1
a2=(6+4)/2=5
Deux tangentes (Rappel : b=-3a) :
avec a=1 :
y=x-3
avec a=5
y=5x-15
Voir graph joint .