👤

Sagot :

Réponse :

Tu pourrais recopier l'énoncé correctement ou te limiter à une seule phrase :

Prouver qu'une fonction polynomiale de degré impair admet  au moins une racine

f(x)=ax^(2n+1) +bx^......=0  admet au moins une solution.

Explications étape par étape

Une fonction polynomiale est définie sur R

Etudions les limites en -oo et +oo

Il faut savoir que la limite d'une fonction polynôme en -oo ou +oo est la limite du terme de plus haut degré.

1)avec a>0

* si x tend vers-oo,   f(x)tend vers-oo

* si x tend vers+oo,  f(x)  tend vers+oo

La fonction étant continue sur R d'après le TVI il existe au moins une valeur "alpha" telle que f(alpha)=0

2)avec a<0

si x tend vers-oo, f(x) tend vers+oo

si x tend vers+oo, f(x) tend vers-oo

la fonction étant continue sur R et d'après le TVI il existe au moins une valeur "alpha" telle que f(alpha)=0

Plus basiquement la courbe représentant f(x) étant continue et allant de -oo à +oo ou inversement ,elle est obligée de couper l'axe des abscisses au moins une fois.

© 2024 IDNLearn. All rights reserved.